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Abstract: -Recently, too much data is being produced in every field of our life. Especially in science, large 

amounts of data are needed to analyze in order to reveal valuable knowledge hidden in raw data. The number of 

DNA sequences has been growing fast since the beginning of the Human Genome Program (HGP) so it 

becomes increasingly important to automate the identification of functional elements in DNA.  But human 

analysts with the traditional tools can no longer make sense. In this study, we employ data mining techniques 

including ANN, ANFIS and newly developed algorithms ke-REM and IREM to extract diamonds of knowledge 

from DNA sequences and evaluate their performances. 
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I. INTRODUCTION 
Researchers are now routinely investigating the biological molecular state of a cell by measuring the 

simultaneous expression of tens of thousands of genes using DNA microarrays (Shelke & Deshmukh, 2007). 

Identification of regulatory regions such as coding region, genomic region or promoters which govern the 

expression of genes can be automated through Data Mining. This entails a wide range of applications such as the 

prediction of stock prices identifying suspected terrorists and scientific discovery like analysis of DNA 

microarray (Hanuman, Raghava, & Siva, 2009). 

Such endeavor entails gene expression which is the process by which information from a gene is used 

in the synthesis of a functional gene product. Proteins are a major structural component of cells, having core 

responsibilities for the maintenance of   shape and structure of the particular cell in addition to molecular 

recognition and catalysis. DNA, which forms the fundamental structural proponent for proteins, is the blueprint 

carrying all cell information and instructions responsible for protein synthesis and regulation.  

Molecular biology posits that the information is transmitted from the DNA strand through the RNA to 

proteins (Taft, Pang, & Mercer, 2010) and (Corporation, 2010) in addition to small non-coding RNAs (miRNA, 

piRNA) and various classes of long non-coding RNAs are involved in a variety of regulatory functions (Taft, 

Pang, & Mercer, 2010) and (Corporation, 2010).  Gene expression entails two processes; these are the 

transcription and translation. The transcription initiation is a very precise event occurring at specific sites with 

specific orientations on the chromosome with a specificity of results from the recognition by RNA polymerase 

holoenzyme of DNA sequences described as promoters. 

The promoter is a region in the DNA molecule where the transcription occurs. In Bioinformatics predicting this 

location is a great challenge and thus posing a great platform for investigations on the same. With the 

consideration that the gene sequence data grow to huge, many computer scientists get into the biological 

technology, and give some methods which take advantages of digitalized power to see into gene sequences 

(Huang, 2003). It is of great significance to note that before the1990s‟ computer programs used for assembling 

coding arrays into translatable MRNA were not in existence, though various conventional techniques existed 

long since the 1980s and were used in the prediction of genomic DNA coding locations.  Since the innovation 

and adoption of the digitalized techniques, prediction of the promoter has improved tremendously by each day.  

Such programs are GenViewer (Milanesi, Kolchanov, & Rogozin, 1993), GeneID (Guigo, Knudsen, Drake, & 

Smith, 1995), GenLang (Dong & Stormo, 1994), GeneParser (Stormo & Snyder, 1993), FGENEH (Solovyev, 

Salamov, & Lawrence, 1994), SORFIND (Hayden & Hutchinson, 1992), Xpound (Skolnick & Thomas, 1992), 

GRAIL (Xu, Mural, & Uberbacher, 1994), VEIL (Henderson, Salzberg, & Fasman, 1997), GenScan (Karlin & 

Burge, 1997). 

According to (Karlin & Burge, 1997), the computational methods are more focused on the 

identification of motifs in a DNA molecule. In addition to the statistical interventions incorporated, other 

techniques such as using weights matrices in addition to the Markov Models as indicated by (Liu, 2002) (Luo & 

Yang, 2006) (Premalatha & Aravindan, 2009)and artificial intelligence. This has also entailed the integration of 
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artificial neural network shave which exhibits subtle values (Luo & Yang, 2006) (Premalatha & Aravindan, 

2009). 

Of these innovations the GRAIL and GeneScan are widely used in academia and industry (Hrishikesh, Nitya, & 

Krishna, 2011).  They help predict and identify an existence of the promoter in the DNA molecule, usually by 

using position, weight matrices and Markov models (Liu, 2002) (Luo & Yang, 2006) and (Premalatha & 

Aravindan, 2009), These endeavors additionally incorporate statistical strategies and artificial intelligence. More 

so, the artificial neural network shave has proved to give appropriate results, though this is criticized as 

specificity has been affected owing to the high false positive rate (Abeel T. S., 2008) (Zhang, 2009).As well, 

some specialists have integrated Neural network in Bioinformatics. 

In the recent past, the integration of computerization in the promoter identification and prediction has raised 

debate. This has come to the consideration of the utilizing of ANN, ANFIS, ke-REM and IREM.  

 

1.1. Promoter Prediction and Its Significance 

A promoter by definition is a DNA non-coding region responsible for initiating transcriptions a specific 

gene. They are usually located on the upstream and on the same strand of the DNA-towards the anti-sense 

strand‟s 3‟ region also referred to as the template strand.  A promoter may be characterized by a nucleotide 

sequence of between 100 to 1000 base pair long (Roded, Karni, & Felder, 2007).  A special enzyme, RNA 

polymerase, is needed for mRNA transcription. This enzyme needs to attach itself to the DNA near a gene for it 

to qualify to be called a promoter sequence. Sequences comprises of specific response and DNA sequences 

responsible for providing a fully secure primary binding site for the enzyme as well as for proteins referred to as 

transcription factors.  

Eukaryotic and Prokaryotic promoters vary from each other. In prokaryotic organism ς70 sigma factor is able to 

identify specific promoter sequences, which in this case are 5‟TATAAT3‟ and 5‟TTGACA3‟ (-10 and -35 

respectively) through the help of ς70 subunit of the polymerase enzyme (Dombroski, Walter, & Record, 1992 ). 

Eukaryotic organism on the other hand is more complex requiring at least 7 different factors for the polymerase 

II enzyme to bind to the promoter (Fig. 1).  

 
Figure 1: position of the promoter in a dna sequence 

(Dombroski, Walter, & Record, 1992 ) 

 

The promoter intensity correlates with identity degree to the sequence but separated by the spacer 

length. Dense promoters are however founded closer to gene (Bujard, Brenner, & Kammerer, 1997) (Grana, 

Gardella, & Susskind, 1998). It has for long been thought that for transcription activity to be optimal, various 

promoter elements‟ combinations including -35 and -10 hexamers, must be in existence coupled with 

downstream and upstream regions (Bujard, Brenner, & Kammerer, 1997). According to this school of thought, 

RNAP works both regions of the two hexamers in sequence and promoters of A+ T-rich sequences upstream of 

the −35 hexamer [26] (Craig, Suh, & Record, 1995) in several E. coli or Bacillus subtilis were identified as 

facilitating increased transcription in vitro when accessory proteins were absent (Frisby & Zuber, 1991). 

Different upstream sequences show different effects on transcription increasing it from a mere 1.5 to 90 fold 

(Wilma, Sarah, & Salomon, 1998). Those promoter sequences that are characterized by powerful binding 

affinity have a direct effect on mRNA transcription. 

Regardless of whether a transcribed DNA sequence can be identified through biological testing or not, 

experiments are known to be time consuming and costly. The promoter prediction approach can however 

narrow promoter regions amongst huge DNA sequences. A subsequent experiment can be established and tested 

thus saving time and money (Huang, 2003). 

 



Computational Approach for Promoter Identification with data Mining Techniques 

International organization of Scientific Research                                            33 | P a g e  

II. METARIAL AND METHODS 
There are two core classes of the promoter prediction, namely „+‟ and „-‟. These classes will denote the 

existence of promoter prediction in the DNA sequence, having the „+‟ denoting for a positive indication of 

promoter location in the DNA sequence and the „-‟ denoting the absence of promoter locations in the DNA 

sequence.  This research paper proposes to deal with a supervised learning technique in the prediction of 

promoter regions in the DNA sequence.  

 

2.1. Collection of Data 

The research sought to incorporate the E. Cole promoter gene arrays of DNA in the testing the 

proficiency of ANN, ANFIS, IREM, ke-REM.  Such data were collected from the UCI Repository (Gabriela & 

Bocicor, 2012); this contains a set of 106 promoter and non-promoter instances. The research paper notes that 

such data is viable in the comparisons of mentioned algorithms with the models existing in the literature; 

additionally such information involving the use of the data set is publicly available (Frank & Asuncion, 2010). 

The 106 DNA arrays are composed of 57 nucleotides each. 53 of the DNA sequences in the data set had a „+‟ 

denoting, indicating the presence of promoter location in the DNA array. The research then sought to align the 

(+) parameter instances separately allowing for transcription. The following data characterize the (+) instances 

as observed from the experiment.  One is that for every occurrence the (+) represents for the promoter positive 

presence,  a name was also given in each instance and a classification of the DNA array was made composing of 

A, T, G and C stand for Adenine, Thymine, Guanine, Cytosine (Gabriela & Bocicor, 2012). 

 

2.2. Adaptive Neuro-Fuzzy Inference System (ANFIS) 

This is a Fuzzy Sugeno technique that is usually placed in a framework for adaptive systems to 

facilitate adaptation and learning (Jang, 1993). It enhances the utilization of least-squares and a back 

propagation gradient descent technique. In addition, a hybrid learning algorithm is used in the identification of 

the membership function parameters and fuzzy IF- Then regulations that are usually considerate of single output 

or singleton (Ho & Tsai, 2011). The fuzzy inference is considered to bear two inputs and a single output.  An 

equation is here below illustrated to affirm to the fuzzy if-then rules of Takagi and Sugeno rule.  

Where if x=A and y=B then z is f (x, y) 

Where A and B are the fuzzy sets in the antecedents and 

Z = f (x, y) is a crisp function in the consequent. 

F (x, y) is usually a polynomial for the input variables x and y. 

Consider z= f (x, y) is a first-order Sugeno fuzzy inference system, which contains two rules. 

Rule 1: If x is A1 and y is B1, Then: f1 =a1 x +b1 y +c1 

Rule 2: If x is A2 and y is B2, Then: f2=a2 x +b2 y +c2 

ANFIS structure (Fig. 2.)  

 
Figure 2: ANFIS structure (Muniraj & 

Chandrasekar, 2011) 

 

Layer 0 is the input layer. It has no nodes where n is the number of inputs to the system. 

The functionality of nodes in ANFIS can be summarized as follows (Soteris & Şencan, 2010): 

Layer 1: Nodes are adaptive; membership functions (MFs) of input variables are used as node functions, and 

parameters in this layer are referred to as antecedent or premise parameters. 

Layer 2: Outputs that indicate Nodes are the fixed using firing strengths  

Layer 3: Outputs that indicate Nodes are the fixed using normalized and strong formality   

Layer 4: The layer 1 gives the Nodes n adaptive feature for the first order technique and defuzzier parameters 

Layer 5: An equal output in relation to the sum of the entire rules‟ output is fixed to the single node 
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2.3. Artificial Neural Network (ANN)  

The artificial neuron is an enthused component in the body‟s natural neurons through computation 

modeling (Jain, 1996). The artificial Neural Network works in an induced principle where in instances that the 

body‟s neurons do receive signals through the naturally induced synapses occurring in the dendrites of the 

neuron, with a much intense magnitude, the ANN is induced thus releasing signal messages via the axon. In 

other instances the signal may be sent to other synapses and probably induce other neurons as noted by 

(Alverez, 2006). Usually the human brain is capacitated with the ability to hold numerous and complex 

operations, thus hails from the possession of numerous and enabling elements such as the complex neurons that 

consist of a more than 10
3
 to 10

4
 more neuron affiliations. This compounds the neuron coverage in the brain to 

approximately 10
14

 interconnections (Alverez, 2006) and (Kriesel, 2005).  

 
Figure 2: Neural dendrites, axon, and synapse 

(Courche, 2013) 

 

In modeling, the density of real neurons is highly exhibited, fundamentally comprising of synapses, 

which are compounded by the density of the respective signals, in addition this is taken under a mathematical 

simulation thus helping to evaluate the activation of the neuron. This moreover helps to compute the result of 

the artificial neuron. According to (Kriesel, 2005) this hails from the property of the ANN that they can 

integrate artificial neurons in the processing of information.   

Usually, getting a precise definition of learning is a difficult task considering that the capability to learn 

is an essential characteristic of intelligence. From the experiment, it is posited that the ANN description is able 

to view from the efficient performance of a neuron task owing to updating of network systems. This is 

evidenced by the literature in (Alverez, 2006) and (Gandhi & Parekh, 2012). 

One is able to obtain the desired output from the manipulation of the ANN; this is so by modifying the 

ANN weights. In such modifications, getting them by hand is a rather complicated and impossible task, giving 

supportive ground to the incorporation of ANN. In addition, (Gandhi & Parekh, 2012) and (Gershenson, 2008), 

algorithms may be integrated in the modifications and alignments of ANN weights.  

  The paper acknowledges the back-propagation algorithm where ANN is aligned in layers and is 

simulated for a forward signal transmission, thus allowing for signal errors to be propagated on the reverse 

(Gershenson, 2008). The input area is the location where the neurons impact the networks and therefore 

initiating the output.  Fig. 3 illustrates a three layered neural network having inputs and output.  

 

 

Figure 3: Multi-layer neural network 

A neuron posses two units that complement the products of weight coefficients and input signals with 

the other unit being responsible for the neuron activation function following its capability to decode non-

linearity. The units are denoted as Signal e for adder output signal and Signal y for the output signal of non-

linearity.  

The experiment notes the necessity to obtain a training data set that will comprise of input signals of x1 

and x2 with a desired output z. In the network training, modifications of ANN weights are evaluated using the 

algorithm that will seek to commence with manipulating for both input signals from the training data set.  
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Consequently, the output signals‟ values are made easier to identify from each neuron in the network (Golda, 

2005). (See Fig. 4) 

 

Figure 4: Teaching Process of Multi-Layer NN 

 

The 106 DNA sequences composing the E. coli will feature for having 4 values. These values will 

stand for the A, T, G and C i.e. Adenine, Thymine, Guanine and Cytosine. Training the ANN and the DNA 

array with the 57 nucleotides attached to each promoter instance is coupled as an ANN input. The DNA 

sequence instances present the network output usually a description of either (+) or (-) occurrence. 

 

2.4. ke-REM (ke-Rule Extraction Method)  

This section introduces the novel development referred to as ke-REM (ke-Rule Extraction Method) and 

addresses its ability in utilizing DNA promoter region predictions. As provided for above, an e.coli dataset 

consists of a total of 106 DNA sequences, each containing a length of 57 nucleotides. The computer science 

perspective expresses the dataset for e-coli as consisting of 106 instances containing 57 attributes bearing four 

values. The attributes for these instances can be expressed as nucleotides locations for the 57-element sequence. 

Each attribute accommodates 4 values, namely T-Thymine, A-Adenine, C-Cytosine and G-Guanine. 

ke-REM constructs a rule-base by applying the data set attribute-value pairs. In an effort to generate a robust 

rule-base, attribute-value pairs with significant importance are used. The significant question at this point 

queries, “How are pairs with significant informational value determined?” the new ke-REM upgrade uses a 

“gain function” in computing the informational value for the set‟s pair. ke-REM considers the higher gain value 

as a  higher informational value indicator. Therefore, the attribute-value with a higher value has a greater 

priority in the processing of rule-base for the prediction system. keREM (ke-Rule Extraction Method) was 

upgraded to have the ability to obtain IF-THEN rules from a given set of examples. It proactively discards 

encountered pitfalls commonly present in inductive learning algorithms. keREM applies the gain function value, 

to determine which attributes are of significant importance and are thus given a higher priority and as such, 

serve to further provide rules that are more commonly acceptable. 

The following is a summary of the algorithm: 

Step 1: In a particular training set, a person computes class distribution and probability distribution rate of every 

attribute-value. 

Step 2: For every attribute in the data set, you compute the power of classification. 

Step 3: for every attribute-value pairs, its Class-based Gain is calculated with the use of computed probability 

distributions, power of classification and class distribution rate.  

Step 4: One rule of selection is that you can select any value whose probability distributions one for n=1. The 

next step is to convert the attribute-values into rules and then you mark the classified examples. 

Step 5: Move to step 8.  

Step 6: Starting from the first example that is unclassified, you form combinations with the n values by using the 

attribute-values that has a bigger gain. 

Step 7: You apply each combination in all examples. Using the values that are made up of n combinations, those 

that match only with on class are converted into a rule. You mark the classified examples. 

Step 8: In the training set, when all examples are classified, you move to step 11. 

Step 9: perform the expression n=n+1 

Step 10: go to step 6 if n<N 

Step 11: Select the most general rule if there is over one rule that represents the same examples.  

Step 12: End. 
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2.5. IREM (Inductive Rule Extraction Method)  

Usage of this technique in predicting promoter region in DNA is introduced in this section which is a 

newly developed IREM (Inductive Rule Extraction Method). E. coli data set is composed of 106 DNA 

sequences, each having a length of 57 nucleotides as described above in this paper. When engaging a digitalized 

mindset, E. coli data set consists of 106 instances with 57 attributes having 4 values. These attributes are defined 

as the position of nucleotides in the 57-element sequence with each attribute taking 4 values which are A-

Adenine, C-Cytosine, G-Guanine and T-Thymine. IREM builds its rule-base using attribute-value pairs in the 

set. 

When generating a rule-base with powerful rule, attribute-value pairs with higher importance are 

employed. Consequently, a significant quest develops an “how the pairs with a higher information value can be 

determined”. IREM applies its own “cost function” to calculate the information value of the pair in the set. It 

deals with regard to the values of the lower cost as an indicator of higher information value. With this, attribute-

value with the higher value is given a greater priority in the process of producing rule-base of the predicting 

system as described by the following algorithm;  

Step1. In a given E. coli data set (training set), distribution of probability of the each attribute-value pairs is 

computed. 

Step2. The class-based entropy is computed for each attribute and value. 

Step3. By using computed probability distributions and class-based entropy, the cost of the pairs is calculated.  

Step4. Any value of which class-based entropy equals zero for n = 1 can be selected as a rule. The pairs are 

converted into rules. The classified examples (instances) are marked. 

Step5. Go to step8. 

Step6. Beginning of the first unclassified example, combinations with no values are formed by taking the value 

of the attributes whose cost is smaller. 

Step7. Each combination is applied to all of the examples in the set. From the values composed of n 

combinations, those matching with only in class are converted into a rule. The classified examples are marked. 

Step8. If all of the examples in the training set are classified then go to step11. 

Step9. Perform n = n + 1 expression. 

Step10. If n < N the go to step6 

Step11 If there is more than one rule representing the same examples; the most general one is selected. 

Step12. End. 

 

III. RESULTS AND DISCUSSION 
An experiment was carried out on the approach for promoter sequence identification using the ANN, 

ANFIS, ke-REM and IREM with a much consideration of providing a comparison with other existing similar 

approaches. 

A standard 5-fold cross-validation was integrated into the evaluation of the ANN performance by having the 

dataset being randomly portioned into 5 subsets. This classification ensures an equal ratio of (+) and (-) 

promoter locations in the DNA array.  

  The training occurred on the ANN for a series 5 times engaging only 4 subsets for each training while 

as retaining the remaining 5 for testing. As a result, 5 models were established during the cross-validation. 

Additionally, a final prediction performance was carried out on the subsets evaluating the average results from 

the experiment.. 

The performance of the promoter predictions was evaluated using the threshold parameters; accuracy (ACC), 

Mathew‟s Correlation Coefficient (MCC), sensitivity (SE) and specificity (SP). A couple of equations were 

integrated to affirm to the results. These were; 

SE=TP/(TP+FN)       (1) 

SP=TN/(TN+FP)       (2) 

ACC= (TP+TN) / (TP+TN+FP+FN)       (3) 

MCC=((TP*TN)-(FN*FP))/SQRT((TP+FN)*(TN+FP)*(TP+FP)*(TN+FN))    (4) 

 

TP is true positive (promoter predicted as promoter). TN is false negative (promoter predicted as non- promoter) 

TN is true negative (non- promoter predicted as non- promoter). FP is false positive (non- promoter predicted 

promoter). 

The detailed performance of modules in term of SE, SP, ACC and MCC is shown in the following tables. 

 

3.1. Experiments with ANN 

In the promoter prediction experiment, the various structures of ANN with one layer, “logsig” transfer 

function and “trainrp”, “trainscg”, “traincgp” learning algorithms were tested.Tables 1, 2, 3 indicate the results 

from this experiment. 
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Table 1: Performance of ANN-1 

Hidden Layer / 

The number of neuron 
Transfer Function Learning Algorithms MCC SE SP ACC 

40-1 logsig trainrp 0.69 0.75 0.92 0.84 

40-1 logsig traincgp 0.70 0.71 0.97 0.84 

40-1 logsig trainscg 0.66 0.72 0.92 0.82 

 

Table 2: Performance of ANN-2 

Hidden Layer / 

The number of neuron 

Transfer 

Function 
Learning Algorithms MCC SE SP ACC 

75-1 logsig trainrp 0.67 0.75 0.91 0.83 

75-1 logsig traincgp 0.67 0.75 0.91 0.83 

75-1 logsig trainscg 0.64 0.72 0.91 0.82 

 

 

Table 3: Performance of ANN-3 

Hidden Layer / 

The number of neuron 

Transfer 

Function 

Learning 

Algorithms 
MCC SE SP ACC 

100-1 Logsig trainrp 0.62 0.75 0.86 0.81 

100-1 Logsig traincgp 0.69 0.69 0.97 0.83 

100-1 Logsig trainscg 0.65 0.71 0.92 0.82 

 

 

The experiment in determining promoter prediction and identification achieved a result by 0, 84 (ACC) 

produced by ANN with one hidden layer having 40 neurons, logsig transfer function and trainrp learning 

algorithm. 

 

3.2. Experiments with ANFIS 

When ANFIS was used, in order to generate a FIS, function which uses fuzzy, c-means (FCM) 

clustering was employed. Genfis3 generates a Sugeno-type FIS structure was fed with input data Xin (57-

element nucleotide sequence) and output data x-out (two classes, promoter or non-promoter). 

The results are showed in the following tables. 

ANFIS info: Number of nodes: 9340, Number of linear parameters: 4640, Number of nonlinear parameters: 

9120, Total number of parameters: 13760,  Number of training data pairs: 80,  Number of checking data pairs: 

0, Number of fuzzy rules: 80 

Table 4: Performance of ANFIS 

  1. Model 2. Model 3. Model 4. Model 5. Model Average 

ACC 0.65 0.75 0.75 0.70 0.65 0.7008 

SE 0.80 1.00 0.90 0.80 0.77 0.8538 

SP 0.50 0.50 0.60 0.60 0.54 0.5477 

MCC 0.31 0.58 0.52 0.41 0.32 0.4281 

 

From the experiment on promoter prediction the best results were found to be at 0.70 (ACC) having been as a 

result of a non-satisfactory relationship as compared to ANN.  

 

3.3. Experiments with IREM 

The ability to can compute class-based entropy of each attribute-value in a given training set is 

considered the most important feature of IREM algorithm. The writer initially works on the probability 
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distributions of each nucleotide forming DNA sequence in terms of promoter and non-promoter classes. 

Secondly, entropy of training set was found. Despite this endeavor the entropy was found not to contain class 

information for the attribute-value pairs. Thus, using the entropy of the training set and the dispersals of 

probability of the attribute-value, class-based entropy was computed for each value in the DNA sequence data 

set. In such way, rules produced by the algorithm were formed by attribute-value whose information value 

produced a maximum. Table 5 illustrates the detailed performance of module in term of SE, SP, ACC and MCC. 

 

Table 5: Performance of IREM  

 
1. Model 2. Model 3. Model 4. Model 5. Model Average 

ACC 0.75 0.95 0.80 0.95 0.69 0.8285 

SE 0.80 1.00 0.80 1.00 0.54 0.8277 

SP 0.70 0.90 0.80 0.90 0.85 0.8292 

MCC 0.50 0.90 0.60 0.90 0.40 0.6632 

       

The ability to can compute class-based entropy of each attribute-value in a given training set is 

considered the most important feature of key-REM algorithm. The writer places focus on works on the 

probability distributions of each nucleotide forming DNA sequence in terms of promoter and non-promoter 

classes. Secondly, entropy of training set was found. Despite this endeavor the entropy was found not to contain 

class information for the attribute-value pairs. Thus, using the entropy of the training set and the distributions of 

probability of the attribute-value, class-based entropy was computed for each value in the DNA sequence data 

set. In such way, rules produced by the algorithm were formed by attribute-value whose information value 

produced a maximum. 

Table 6: Performance of ke-REM  

 
1. Model 2. Model 3. Model 4. Model 5. Model Average 

ACC 0.75 0.90 0.80 0.90 0.69 0.8085 

SE 0.80 0.90 0.80 1.00 0.54 0.8077 

SP 0.70 0.90 0.80 0.80 0.85 0.8092 

MCC 0.50 0.80 0.60 0.82 0.40 0.6246 

       

3.4. Evaluating The Performance of The Algorithms Using a “Leave-One-Out” Methodology 

A cross-validation using a “leave-one-out” methodology was applied in the prediction and 

identification of the promoter location in DNA as described there in the Literature. Leave-one-out cross-

validation (LOOCV) is a special case of k-fold cross-validation where k equals the number of instances in the 

data. Particularly, nearly all the data except for a single observation are used for training and the model is tested 

on that single observation giving an accurate estimate known to be almost unbiased as indicated by (Efron, 

1983).  In Bioinformatics, LOOCV is still widely used when the available data are very rare or where only 

dozens of data samples are available. 

 
Table 7:The Errors of Some Machine Learning Algorithms 

on Promoter Data Set. 

System Errors Classifier 

REX-1 0/106 Inductive  L.A 

ANN 0/106 One hidden layer 

IREM 2/106 Class-based entropy 

ke-REM 3/106 Class-based gain 

KBANN 4/106 A hybrid ML system 

BP 8/106 Standard backpropagation with 

one layer 
ANFIS 11/106 genfis3 

O'Neill 12/106 Ad hoc tech. from the bio. lit. 

NearNeigh 13/106 A nearest neighbours algorithm 

ID3 19/106 Quinlan's decision builder 
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Compared to the classifiers already applied in the literature for promoter prediction (see Table 7), ANN, ke-

REM and IREMintroduced in this paper outperforms existing classifier for promoter prediction: it is better than 

KB, ID3, O‟Neill, NN and BP, considering the error of the classification. But, ANFIS is not sufficient classifier 

in the proposed configuration. 

 

IV. CONCLUSIONS 
We pose that promoter prediction and identification is an indispensable package in the Bioinformatics 

field, considering a digitalized approach. The ANN, ANFIS, ke-REM and IREM pose a great stride in this 

endeavor. Based on the structural and functional aspects of the ANN, ANFIS, ke-REM and IREM, there is the 

impact caused by the transmission of information through the network facilitating changes in the entire network 

based on the input and output.   

From these successful results, the author notes that an integration of ANN, ANFIS, ke-REM and IREM 

for promoter prediction transfers to great and appropriate results thereby providing for ground to endeavor much 

more in improving promoter prediction and identification.  But the results of the experiment employed ANFIS 

shows that Adaptive Neuro-Fuzzy Inference System is not an adequate method for prediction of promoter. As a 

future research, in order to increase accuracy of the ANFIS, the dimensionality of this dataset should be reduced 

by means of a feature selection process. 
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